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Abstract. The general solution of the equation SR2/Sgi, = 0 is found under the assump- 
tion that the metric has the generic form dsZ = e2Qa"'(dxn)2-e26(')dtz. Its relation 
to the special solution characterised by the constancy of R is examined. 

1. Introduction 

In the general theory of relativity the vacuum field equations express the vanishing of 
the functional derivative of the scalar curvature R of the V4 within which the 
formalism of the theory operates. In place of R one may contemplate other invariants 
I? of the Riemann tensor, for if Pi' := Sl?/Sgii one still has the identity Piiij = 0 which 
plays a role in the context of conversation laws. Leaving R aside, most investigations 
have centred around the family of quadratic invariants K = a R 2 +  bRijRii (a,  b = 
constant). This is in effect the most general Lagrangian which is a quadratic form in 
the components of the Riemann tensor (e.g. Buchdahl 1960, P 2). 

Although one may doubt whether any Lagrangian which does not reduce to R in 
the weak-field limit is likely to be relevant to the theory of gravitation, the study of the 
equations generated by the invariant K above is at least of formal interest. I showed 
long ago (Buchdahl 1948a, b) that they are satisfied by an arbitrary Einstein space and 
more recently (Buchdahl 1973) considered the question of the existence of static, 
regular, asymptotically flat solutions. However, very little is known about the explicit 
form of solutions (excluding the case where these represent an Einstein space and 
disregarding the case 3a + b = 0). Even with the choice b = 0 and assuming the metric 
to be static and spherically symmetric the problem is intractable although it is re- 
ducible to the problem of finding the solution of a certain single, ordinary, non-linear 
second-order differential equation (Buchdahl 1962). The only tangible result in this 
context is that there exist no sufficiently often differentiable, asymptotically flat 
solutions the scalar curvature of which does not vanish everywhere. 

In the light of the situation just outlined it seems desirable to investigate the 
possibility of so choosing K and the generic form of the metric that the general 
solution of the corresponding equations can be obtained explicitly. To this end I 
examine in this paper the equations 

SR -=o 
Sgii 
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when the metric is assumed to be of ‘Kasner type’, that is to say, when it has the 
generic form 

Its general solution is found and its relationship to the solution characterised by the 
constancy of the scalar curvature is examined. 

2. The field equations 

The explicit form of the equations (1.1) is 

R;jj+RRij-gij(UR + a R 2 ) = 0 .  (2.1) 
From (2.1) it follows by transvection with g” that 

O R = O .  (2.2) 

R[& + ( e  -@)cia] +&cia + a  e2@R2 = 0, 

R - @R + ( e  - e@ + 4 )  + a eZ8R = 0. 

For the metric (1.2) the only surviving equations are as follows: 

(a  = 1 ,2 ,3 )  (2.3) 

(2.4) 
Here a dot denotes differentiation with respect to t and 

3 3 

a = l  a = l  

2 e:= 1 ( y o ,  4:= 1 cia. 

(2.2) takes the explicit form 

R + ( e - @ ) A  =o. 

3. Solution of the equations when R # constant 

As noted in 9 1, when R = constant =: 4A f 0 (2.1) reduces to 

(3.1) R. .  = Ag.. 
$7 

i.e. the equations are satisfied by an arbitrary Einstein space; whilst when A = 0, (2.1) 
is somewhat trivially satisfied when the V4 has zero scalar curvature. Let it therefore 
now be assumed that R is not constant. In that case one can always so choose the 
time-like coordinate t that 

R = t ;  (3.2) 
a device which does not affect the generic form of the metric. Then (2.6) at once 
shows that 

/ 3 = O + b ,  (3.3) 
where b is a constant of integration. As a consequence of (3.2) and (3.3) equations 
(2.3) reduce to 

tdi, + ka + i t 2  e’’ = o (a  = 1,2,3) .  (3.4) 
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Summing over a one then obtains an equation for p, namely 

tb + 6 + i t 2  e2* = 0. 

This is elementary and has the solution 

e-' = (J3/4r~)t~ '~(ct"  +c- ' t - " ) ,  (3.5) 

where c and n are constants of integration. 

of a .  Therefore 
Inspection of (3.4) reveals that the functions t&, + 4, are independent of the value 

an = a I + c a  In t+&,  (a  = 2 , 3 )  

where the c, and d,  are constants. The latter may be omitted since they may be 
removed by a change of scale of the coordinates x 2  and x 3 .  It follows that 

(a = 1 , 2 , 3 )  (3.6) 1 a, = 38 + Y, In t ,  

where the vn are three constants such that 

1 U, =o.  (3.7) 
It remains to ensure that (2.4) is satisfied. The easiest way to do this is as follows. By 
(3.3) and (3.6) 

4 = 1 (38 + V a t - ' ) 2  = ; f i2+ t -2  1 Ut. 
1 2 28 Insert this in (2.4) and use (3.2) and (3.3). Upon eliminating the term zt e 

resulting equation one finds that B := e-* must satisfy 
from the 

t2B-2tB-$ CY: B = 0 .  0 
This is compatible with (3.6) only if 

1 v: =i(4n2-9) .  

This result shows incidentally that the value of n cannot be less than 2. 
of the coordinates xl, x 2 ,  x 3 .  The solution of (2.1) thus takes the form 

The constant b in (3.3) is redundant since it may be removed by a change of scale 

ds2=e:* t2"a(dxa)2-e2B dt2, (3.9) 
n 

where p is given by (3.6) and the va are subject to the two conditions (3.7) and (3.8). 
As a reliable check on these results one may calculate the right-hand side of the 

equation 
R =-e-2@(2/j-fi2+4) 

using the expressions for p and 4 obtained above. It turns out that R = t, consistently 
with (3.2). 

4. Solution of RI, = Ag,, 

It will shortly be useful to have the solution of (3.1) for the metric (1.2) at hand. This 
problem has been considered by Petrov (1964) for the more general case of a V,, of 
signature 2 - n but certain conditions to be satisfied by constant parameters which 
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occur in the metric coefficients are missing. (The original paper is not accessible to 
me.) 

Using the previous notation, equations (3.1) read explicitly 

di, +e&, = -A, 

8 + f$ = -A. 

(a = 1 , 2 , 3 )  

It will suffice to take A > 0. Then write 3A =: k2. Summing (4.1) over a gives 

e +  e 2 + k 2  = 0, 

whence, for a suitable choice of origin of the t-coordinate, 

ee = A sin kt, 

ci, = fk  cot kt + kv, cosec kt, 

(4.3) 

where A is a constant of integration. Using (4.3), (4.1) may be solved to give 

(4.4) 

where, on account of (4.3), the three constants of integration v, must satisfy the 
condition 

c u a = 0 .  (4.5) 

Insertion of (4.3) and (4.4) in (4.2) then shows that they must also satisfy the condition 

Integrating (4.4), 

CY, = $ In sin kt + v, In tan(ikt), 

the new constants of integration here being omitted since they can be accounted for by 
a suitable change of scale of the coordinates x 5 .  Thus finally 

ds2 = ~in ' /~ (k t )  5 tan2Ya(tkt)(dxQ)2 -dt2, (4.7) 

where the v, must satisfy the conditions (4.5) and (4.6), these being the conditions 
referred to at the beginning of this section. 

1 Now write va =: n, - 5 and set 

7 := 2k-' tan(4kr). (4.8) 

Then, with a suitable change of scale of the x a ,  (4.7) can be written 

ds2 = c o ~ ~ / ~ ( $ k t )  1 T2na(dxa)2-df2, 
a 

where 

C n , = 1 ,  C n : = l .  

(4.9) 

(4.10) 

When A + 0, i.e. k + 0, this reduces at once to the original Kasner metric (see Petrov 
1964) 

d s 2 = x  t2"a(dxP)2-dt2. (4.11) 
4 
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5. Remark on the relation between the cases R # constant and R = constant 

The following procedure is instructive even if it bears a somewhat heuristic character. 
In (3.5), (3.9) set 

c =: (3/4k2)" =: (4A)-" and v, =: nvb. 

Then make the transformation of coordinates 

t = (c-' tan ikt')''", x a  = h,x'", (not summed) 

where h, = (3/4n2)'/6(3/4k2)"a-1'2. In the first place we now have 

R = 4A (tan i k t ' ) l /" .  (5.1) 

Furthermore, the metric (3.9) becomes 

where 
I 2  -2 3 -2 c v; = 0, CY, - 3 - ~ n  . (5.3) 

In the limit n +CO (5.2) and (5.3) reduce exactly to the corresponding equations (4.7), 
(4.5) and (4.6) obtained in § 4, whilst (5.1) consistently reduces to R = 4A. Bearing in 
mind that the solution with A = O  can in turn be obtained from (4.7) as shown 
previously, one sees that (3.9) is in effect the most general solution of the equation 
(1.1) when the metric is prescribed to have the generic form (1.2). 

6. The special case n =$ 

The metric (3.9) will be spherically symmetric provided v1 = v2 = v3. On account of 
(3.7) and (3.9) this is possible only if v, = 0 and therefore n = 2. In this case, upon 
making suitable changes of scale of the coordinates and bearing in mind that the 
equations (1.1) are insensitive to the provision of ds2 with a constant factor, the 
solution of these equations may be exhibited in the form 

ds2 = (t3 + 1)-2 /3(d~2 + dy2 + dz2)- ( t 3  + 1)-' dt2; (6.1) 
and R = 12t. This is conformally flat, by inspection; but (3.9) is not conformally flat 
for any other values of the v,. 

7. Modified Kasner type metric 

In place of (1.2) one may also consider in the present context a 'modified Kasner type 
metric', i.e. one which differs from the former only in that the a, and p are taken to be 
functions of x' rather than of t. Not surprisingly the corresponding solution bears a 
strong formal resemblance to (3.9): 

ds2 = e 2 8 ( d x 1 ) 2 + e f a [ ( x 1 ) 2 Y 2 ( d ~ 2 ) 2 + ( ~ 1 ) 2 u 3 ( d ~ 3 ) 2 - ( ~ 1 ) 2 u ~  dt2] (7.1) 
with 

e-' = ( J ~ / ~ ~ ) ( X ' ) ~ / ~ [ C ( X ' ) "  - c-'(xl)-"], 
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where c, n, vl, v2, v3 are constants of integration the last three of which are again 
subject to (3.7) and (3.8). 

8. Concluding remark 

In (7.1) the constants v, are naturally real and therefore the least allowed value of n is 
3. However, one can contemplate also complex values of the v, provided that at the 
same time one makes an appropriate complex transformation of coordinates. The 
resulting metric will still satisfy (1.1). The following is a simple example. Set v1 = 
a + ib, v2 = a - ib, a, b real; and make the transformation 

3 

x 1 =x,  y=( iu+v) / J2 ,  x 3 = z ,  t = ( u + i v ) / J 2 .  

Then (7.1) becomes 

ds2=e2’ d ~ ~ + e ~ ’ ( x ~ ~ [ c o s ( 2 b  Inx)(dv2-du2)+2 sin(2b In x)du  d v ] + ~ ~ ” ~  dz2} 

which has again the correct signature +2. (3.7) and (3.8) become 
(8.1) 

(8.2) 2a + v3 = 0, 3 a2 - b2 = $ ( n 2  - 5 )  
so that one no longer has the necessary restriction n a$. Although this is an interes- 
ting conclusion it is not strictly relevant to the present context since a metric of Kasner 
type, as defined initially, must be diagonal; which (8.1) is not. (8.1) is merely one 
example of the more general class of ‘one-dimensional’ metrics of signature 2. Those 
which are Ricci-flat have been determined by Dautcourt et a1 (1962) and to find all 
those which satisfy (1.1) would require an analogous investigation. 
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